CFTR activation in human bronchial epithelial cells by novel benzoflavone and benzimidazolone compounds.
نویسندگان
چکیده
Activators of the CFTR Cl- channel may be useful for therapy of cystic fibrosis. Short-circuit current (Isc) measurements were done on human bronchial epithelial cells to characterize the best flavone and benzimidazolone CFTR activators identified by lead-based combinatorial synthesis and high-throughput screening. The 7,8-benzoflavone UCcf-029 was a potent activator of Cl- transport, with activating potency (<1 microM) being much better than other flavones, such as apigenin. The benzimidazolone UCcf-853 gave similar Isc but with lower potency (5-20 microM). In combination, the effect induced by maximal UCcf-029 and UCcf-029, UCcf-853, and apigenin increased strongly with increasing basal CFTR activity: for example, Kd for activation by UCcf-029 decreased from >5 to <0.4 microM with increasing basal Isc from approximately 4 microA/cm2 to approximately 12 microA/cm2. This dependence was confirmed in permeabilized Fischer rat thyroid cells stably expressing CFTR. Our results demonstrate efficacy of novel CFTR activators in bronchial epithelia and provide evidence that activating potency depends on basal CFTR activity.
منابع مشابه
A common mechanism for cystic fibrosis transmembrane conductance regulator protein activation by genistein and benzimidazolone analogs.
We have investigated the mechanism of action of two benzimidazolone analogs (NS004 and NS1619) on DeltaF508-CFTR using both whole-cell and cell-attached patch-clamp techniques and compared their effects with those of genistein. We conclude that benzimidazolone analogs and genistein act through a common mechanism, based on the following evidence: 1) both act only on phosphorylated CFTR, 2) the m...
متن کاملStimulation of Wild-Type, F508del- and G551D-CFTR Chloride Channels by Non-Toxic Modified pyrrolo[2,3-b]pyrazine Derivatives
Cystic fibrosis (CF) is a major inherited disorder involving abnormalities of fluid and electrolyte transport in a number of different organs due to abnormal function of cystic fibrosis transmembrane conductance regulator (CFTR) protein. We recently identified a family of CFTR activators, which contains the hit: RP107 [7-n-butyl-6-(4-hydroxyphenyl)[5H]-pyrrolo[2,3-b]pyrazine]. Here, we further ...
متن کاملO-28: New Insights into the Mechanisms UnderlyingChlamydia Trachomatis Infection InducedFemale Infertility
Background: Chlamydia (C.) trachomatis is an obligate intracellular gram-negative pathogen affecting over 600 million people worldwide with 92 million new cases occurring globally each year. Genital C. trachomatis infection has been recognized as the most common cause of pelvic inflammatory disease leading to severe tubal damage, ectopic pregnancy, hydrosalpinx and infertility. However, the mec...
متن کاملCFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is me...
متن کاملNovel amino-carbonitrile-pyrazole identified in a small molecule screen activates wild-type and ΔF508 cystic fibrosis transmembrane conductance regulator in the absence of a cAMP agonist.
Cystic fibrosis (CF) is caused by loss-of-function mutations in the CF transmembrane conductance regulator (CFTR) Cl⁻ channel. We developed a phenotype-based high-throughput screen to identify small-molecule activators of human airway epithelial Ca²⁺-activated Cl⁻ channels (CaCCs) for CF therapy. Unexpectedly, screening of ∼110,000 synthetic small molecules revealed an amino-carbonitrile-pyrazo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 285 1 شماره
صفحات -
تاریخ انتشار 2003